• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Friedrich-Alexander-Universität Lehrstuhl für Strafrecht, Strafprozessrecht und Rechtsphilosophie
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Rechtswissenschaft
Suche öffnen
  • Login
  1. Friedrich-Alexander-Universität
  2. Fachbereich Rechtswissenschaft
Friedrich-Alexander-Universität Lehrstuhl für Strafrecht, Strafprozessrecht und Rechtsphilosophie
Menu schließen
  • Startseite
  • Lehrstuhlteam
    • Lehrstuhlinhaber Prof. Dr. Hans Kudlich
    • Privatdozent Dr. Tobias Kulhanek
    • Honorarprofessor Dr. Axel Adrian
    • Sekretariat
    • Wissenschaftliche Mitarbeiter
      • PostDocs (Habilitanden)
      • Akad. Rätin a.Z.
      • Wissenschaftliche Mitarbeiterinnen und Mitarbeiter
    • Gastwissenschaftler
    • Lehrbeauftragter RiOLG Dr. Markus Ebner
    • Studentische Hilfskräfte
    • Ehemaliger Lehrstuhlinhaber
    • Ehemalige Mitarbeiter
    Portal Lehrstuhlteam
  • Lehrveranstaltungen
  • Forschung
    • Aktuelle Projekte
    • Promotionen am Lehrstuhl
    • Habilitationen
    Portal Forschung
  1. Startseite
  2. Honorary Professor Dr. Axel Adrian
  3. Research projects

Research projects

Bereichsnavigation: Honorary Professor Dr. Axel Adrian
  • About Person
  • Events
  • Research projects
  • Staff
  • Overview to the links of my YouTube videos and to the links of the FAU TV videos of our conference.

Research projects

Project managers: Axel Adrian, Stephanie Evert

Collaborators:

  • Nathan Dykes
  • Philipp Heinrich
  • Michael Keuchen
  • Thomas Proisl
  • numerous student assistants

Start: April 2020

End: March 2022

Acronym: LeAK 1

Funding: Bavarian State Ministry of Justice (StMJ)

Research objective:

A demonstrator for automatic anonymization and semi-automatic pseudonymization was developed and evaluated. In particular, judgments of local courts in residential tenancy law and traffic law were processed.

Only very few court decisions are currently published in Germany, mainly because they have to be anonymized manually at great expense. However, a large number of legally relevant documents are indispensable for legal practice and legal science as well as for the development of digital services in business, politics and administration. Automated processes for anonymizing these texts are necessary so that large volumes of court decisions can be made available in a time- and resource-efficient manner in compliance with the applicable data protection regulations. The judgments made available in this way could, for example, be used as training data for the development of processes based on artificial intelligence (AI), which will make the work of courts and authorities easier in the future.

The use of legal field-specific software solutions for the automatic anonymization of court judgments is a novelty in the field of e-justice and legal tech. Pioneering work is also being done in the project by systematically combining results from different areas of law for the first time and comprehensively anonymizing and pseudonymizing court judgments. This will make urgently needed data available on a large scale for the digital transformation of processes in state institutions. In addition, not only the private sector legal tech community and existing start-ups will benefit from the large database of anonymized and pseudonymized judgments, but also the digitalization of the state and administration as well as the innovative strength of Germany as a business location as a whole.

Further links and literature:

https://www.linguistik.phil.fau.de/projects/leak-anger/

Project managers: Axel Adrian, Stephanie Evert

Collaborators:

  • Philipp Heinrich
  • Michael Keuchen
  • Numerous student assistants

Start: April 2023

End: March 2024

Acronym: LeAK 2

Funding: Bavarian State Ministry of Justice (StMJ)

Research objective:

An improved demonstrator for automatic anonymization and semi-automatic pseudonymization was developed and evaluated. In particular, OLG judgments in traffic accident and traffic insurance cases, as well as banking and insolvency cases, capital investment cases, cost cases and arbitration cases were examined. Furthermore, deanonymization experiments and usability studies for the self-developed user interface were carried out.

In Germany, only very few court decisions are currently published, mainly because they have to be anonymized manually at great expense. However, a large number of legally relevant documents are indispensable for legal practice and legal science as well as for the development of digital services in business, politics and administration. Automated processes for anonymizing these texts are necessary so that large volumes of court decisions can be made available in a time- and resource-efficient manner in compliance with the applicable data protection regulations. The judgments made available in this way could, for example, be used as training data for the development of procedures based on artificial intelligence (AI), which will make the work of courts and authorities easier in the future.

The use of legal field-specific software solutions for the automatic anonymization of court judgments is a novelty in the field of e-justice and legal tech. Pioneering work is also being done in the project by systematically combining results from different areas of law for the first time and comprehensively anonymizing and pseudonymizing court judgments. This will make urgently needed data available on a large scale for the digital transformation of processes in state institutions. In addition, not only the private sector legal tech community and existing start-ups will benefit from the large database of anonymized and pseudonymized judgments, but also the digitalization of the state and administration as well as the innovative strength of Germany as a business location as a whole.

Further links and literature:

https://www.linguistik.phil.fau.de/projects/leak-anger/

Project managers: Axel Adrian, Stephanie Evert

Collaborators:

  • Bao Minh Doan Dang
  • Philipp Heinrich
  • Michael Keuchen
  • Melanie Rosa
  • Julian Werner
  • Leonardo Zilio
  • Numerous student assistants

Start: December 2022

End: December 2025

Acronym: AnGer

Funding: Federal Ministry of Education and Research (BMBF), Bavarian State Ministry of Justice (StMJ)

AnGer is part of the research cluster „Anonymization for the secure handling of data“ (https://www.forschung-it-sicherheit-kommunikationssysteme.de/foerderung/bekanntmachungen/anonymisierung)

Research objective:

The technical possibilities for automatic anonymization and pseudonymization are being researched on a very broad scale and a demonstrator for automatic anonymization and pseudonymization is being developed, which can be used to process judgments from a wide range of instances and different areas of civil law. In addition, various other experiments are being carried out, in particular deanonymization experiments.

Only very few court decisions are currently published in Germany, mainly because they have to be anonymized manually at great expense. However, a large number of legally relevant documents are indispensable for legal practice and legal science as well as for the development of digital services in business, politics and administration. Automated processes for anonymizing these texts are necessary so that large volumes of court decisions can be made available in a time- and resource-efficient manner in compliance with the applicable data protection regulations. The judgments made available in this way could, for example, be used as training data for the development of processes based on artificial intelligence (AI), which will make the work of courts and authorities easier in the future.

The use of legal field-specific software solutions for the automatic anonymization of court judgments is a novelty in the field of e-justice and legal tech. Pioneering work is also being done in the project by systematically combining results from different areas of law for the first time and comprehensively anonymizing and pseudonymizing court judgments. This will make urgently needed data available on a large scale for the digital transformation of processes in state institutions. In addition, not only the private sector legal tech community and existing start-ups will benefit from the large database of anonymized and pseudonymized judgments, but also the digitalization of the state and administration as well as the innovative strength of Germany as a business location as a whole.

Further links and literature:

https://www.linguistik.phil.fau.de/projects/leak-anger/

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/anger

Project managers: Axel Adrian, Stephanie Evert, Michael Kohlhase, Lutz Schröder, Andreas Maier

Employees:

  • Aurelius Adrian
  • Anil Basaran
  • Nathan Dykes
  • Michael Gritz
  • Merlin Humml
  • Max Rapp
  • Verena Stürmer
  • student assistants

Start: March 2024

End: February 2027

Acronym: DIREGA

Funding: Federal Chamber of Notaries (BNotK), Bavarian State Chamber of Notaries (LNotK), Bavarian State Ministry of Justice (StMJ)

Research objective:

This is a multidisciplinary research project „Digital Register Assistant“ on behalf of the Federal Chamber of Notaries and in cooperation with the Bavarian Chamber of Notaries and the Bavarian State Ministry of Justice.

The project is concerned with basic research in the field of law and computer science and, in particular, questions relating to the extent to which legal decisions can be supported by machines or even made automatically using artificial intelligence (AI). Specific legal issues from commercial, corporate and register law are to be examined in connection with various sub-disciplines of AI research.

With the help of so-called corpus and computational linguistics (NLP), for example, natural language texts in legal documents are transformed into machine-readable language and information is automatically extracted. With so-called symbolic AI, e.g. legal argumentation must be formalized, legal expertise and practical knowledge must be represented automatically and machine reasoning processes must be evaluated. Pattern recognition and sub-symbolic AI methods can be used to generate legally relevant training data, for example. Finally, results generated by machines must always be evaluated for legal consistency. By developing a prototype as part of the research project, fundamental insights are to be gained into how law can be interpreted and applied in the future using technology or hybrid AI systems.

Project managers: Aurelius Adrian, Axel Adrian, Timo Meinhof

Start: April 2019

End: open

Funding: own funds

Research objective:

Tools for legal service processes will be developed, such as contract drafting automaton, money laundering documentation tool, semantic full-text search assistant, etc.

Friedrich-Alexander-Universität
Lehrstuhl für Strafrecht, Strafprozessrecht und Rechtsphilosophie

Schillerstraße 1
91054 Erlangen
  • Videoportal
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben
Datenschutzeinstellungen

Unsere Webseite verwendet Cookies und ähnliche Technologien.

Einige Cookies sind für den Besuch dieser Webseite notwendig, also essenziell. Ohne diese Cookies wäre Ihr Endgerät ansonsten zum Beispiel nicht in der Lage, sich Ihre Datenschutzauswahl zu merken.

Falls Sie zustimmen, verwenden wir Cookies und Daten auch, um Ihre Interaktionen mit unserer Webseite zu messen, oder um externe Medien (z.B. Videos) einzubinden.

Sie können Ihre Einwilligung jederzeit unter Datenschutzerklärung einsehen und widerrufen. Auf der Seite finden Sie auch zusätzliche Informationen zu den verwendeten Cookies und Technologien.

Datenschutzeinstellungen

Alle akzeptieren

Speichern

Nur essentielle Cookies akzeptieren

Individuelle Einstellungen

Impressum Datenschutzerklärung Barrierefreiheit

Datenschutzeinstellungen

Hier finden Sie eine Übersicht aller verwendeten Cookies. Sie können Ihre Einwilligung zu ganzen Kategorien geben oder sich weitere Informationen anzeigen lassen und bestimmte Cookies auswählen.

Alle akzeptieren Speichern Nur essentielle Cookies akzeptieren

Zurück

Datenschutzeinstellungen

Essenzielle Cookies ermöglichen grundlegende Funktionen und sind für die einwandfreie Funktion der Website erforderlich.

Cookie-Informationen anzeigen Cookie-Informationen ausblenden

Name
Anbieter Eigentümer dieser Website
Zweck Speichert die Einstellungen der Besucher, die in der Consent-Banner ausgewählt wurden.
Datenschutzerklärung https://www.str2.rw.fau.de/datenschutz/
Hosts www.str2.rw.fau.de
Cookie Name rrze-legal-consent
Cookie Laufzeit 1 Jahr
Name
Anbieter Keine Übermittlung an Drittanbieter
Zweck Teste, ob ein Cookie gesetzt werden kann. Benutzersitzung speichern.
Datenschutzerklärung https://www.str2.rw.fau.de/datenschutz/
Hosts .www.str2.rw.fau.de
Cookie Name wordpress_[*]
Cookie Laufzeit Session
Name
Anbieter Keine Übermittlung an Drittanbieter
Zweck Dient zur Verwaltung des WebSSO-Sitzungsstatus.
Datenschutzerklärung https://www.str2.rw.fau.de/datenschutz/
Hosts www.str2.rw.fau.de
Cookie Name SimpleSAMLSessionID,SimpleSAMLAuthToken
Cookie Laufzeit Session
Name
Anbieter Keine Übermittlung an Drittanbieter
Zweck Bewahrt den Status der Benutzersitzung über Seitenanfragen hinweg.
Datenschutzerklärung https://www.str2.rw.fau.de/datenschutz/
Hosts www.str2.rw.fau.de
Cookie Name PHPSESSID
Cookie Laufzeit Session

Statistik-Cookies erfassen Informationen anonym. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.

Cookie-Informationen anzeigen Cookie-Informationen ausblenden

Akzeptieren
Name
Anbieter Rosenheimer Str. 143 C, 81671 München, Deutschland
Zweck Wird verwendet, um die Nutzung der Website durch den Besucher zu erfassen.
Datenschutzerklärung https://www.siteimprove.com/privacy/privacy-policy/
Hosts siteimprove.com
Cookie Name nmstat
Cookie Laufzeit 1000 Tage

Inhalte von Videoplattformen und Social-Media-Plattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Einwilligung mehr.

Cookie-Informationen anzeigen Cookie-Informationen ausblenden

Akzeptieren
Name
Anbieter Twitter International Company, One Cumberland Place, Fenian Street, Dublin 2, D02 AX07, Irland
Zweck Wird verwendet, um Twitter-Inhalte zu entsperren.
Datenschutzerklärung https://twitter.com/privacy
Hosts twimg.com, twitter.com
Cookie Name __widgetsettings, local_storage_support_test
Cookie Laufzeit Unbegrenzt
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Irland
Zweck Wird verwendet, um Youtube-Inhalte zu entsperren.
Datenschutzerklärung https://policies.google.com/privacy?hl=en&gl=en
Hosts google.com, youtube.com, youtube-nocookie.com
Cookie Name NID
Cookie Laufzeit 6 Monate
Akzeptieren
Name
Anbieter Vimeo Inc., 555 West 18th Street, New York, New York 10011, Vereinigte Staaten
Zweck Wird verwendet, um Vimeo-Inhalte zu entsperren.
Datenschutzerklärung https://vimeo.com/privacy
Hosts player.vimeo.com
Cookie Name vuid
Cookie Laufzeit 2 Jahre
Akzeptieren
Name
Anbieter Scribd, Inc., 460 Bryant St, 100, San Francisco, CA 94107-2594 Vereinigten Staten
Zweck Wird verwendet, um Slideshare-Inhalte zu entsperren.
Datenschutzerklärung https://www.slideshare.net/privacy
Hosts www.slideshare.net
Cookie Name __utma
Cookie Laufzeit 2 Jahre
Akzeptieren
Name
Anbieter Bayerischer Rundfunk, Rundfunkplatz 1, 80335 München, Deutschland
Zweck Wird verwendet, um BR-Inhalte zu entsperren.
Datenschutzerklärung https://www.br.de/unternehmen/service/impressum/impressum-datenschutzerklaerung-unternehmen-v2-100.html
Hosts www.br.de
Cookie Name atid
Cookie Laufzeit 1 Jahr
Akzeptieren
Name
Anbieter Bayerischer Rundfunk, Rundfunkplatz 1, 80335 München, Deutschland
Zweck Wird verwendet, um ARD-Inhalte zu entsperren.
Datenschutzerklärung https://www.ardmediathek.de/datenschutz
Hosts www.ardmediathek.de
Cookie Name atidvisitor
Cookie Laufzeit 1 Jahr

Impressum Datenschutzerklärung Barrierefreiheit